TRANSMISSION MÖSSBAUER SPECTROMETER

- > Typical experimental setup for transmission mössbauer spectra measurement consist of:
 - Experimental Bench.
 - Intelligent Nuclear Detector.
 - Neodymium Velocity Transducer.
 - Spectrometer main unit.
 - Gamma radiation source and spectra interpretation software has to be purchased separately.

EXPERIMENTAL BENCH

- > Experimental Bench is cylindrical, with two mounting feet.
- > The cylinder has approx. 70 mm in diameter and it is 460 mm long.
- > As can be seen on figure, cylinder is separated in three parts:
 - Detector housing (protective shielding of detector, which also works as the radiation shield).
 - Sample holder (with two collimators to adjust amount of gamma photons which are impacting the sample and going through to detector).
 - Velocity transducer housing (protective shielding of velocity transducer, including lead gamma radiation shield).

INTELLIGENT **NUCLEAR DETECTOR**

- > Complete detection and signal processing unit in single compact housing.
- > Designed primarily for 14.4 keV gamma photons detection, but it is capable of different energies detection (it can be simply customized).
- > Mark I. version includes:
 - YAP:Ce Scintillating crystal 1' diameter, 0.3 mm thickness, 30 nm alluminum mirror.
 - Photomultiplier HAMAMATSU R6095, 1' diameter.
 - High voltage supply HAMAMATSU C9028-01, from 0 to -1200V.
 - Three stage fast amplifier.
 - Control and power supply electronics.
 - Control application for PC with Windows OS.
- Mark II. Version includes:
 - YAP:Ce Scintillating crystal 1' diameter, 0.3 mm thickness, 30 nm alluminum mirror.
 - Photomultiplier HAMAMATSU R6095, 1' diameter.
 - High voltage supply HAMAMATSU C9028-01, from 0 to -1200V.
 - Three stage fast amplifier.
 - Single-channel analyzer in combination with control application is capable to perform complete multichannel analysis.
 - Control and power supply electronics.
 - Control application for PC with Windows OS.

- > The amplification of detector is controlled electronically, using standard USB (I2C) interface.
- > High voltage level of photomultiplier is controlled electronically, using standard USB (I2C) interface.
- > Analog output signal (from amplifier) is a mixture of various amplitudes from 0 V to 5 V, pulse-length is about 120 ns (both amplitude and pulse-length depends on detected energy).
- > Logic output signal (from single channel analyzer) is a series of TTL positive logic pulses, which represents only valid detections (gama photons with selected energies).
- > Detector can be controlled with custom program, instruction set is included.

Average pulse shape was acquired as an average of 100 000 analog pulses (directly from amplifier) with amplitudes 1 V \pm 0.05 V. For this purposes, the NI USB-5133 digitizer was used.

NEODYMIUM VELOCITY TRANSDUCER

- Complete velocity drive solution for Mössbauer spectroscopy.
- Analogue PID feedback for precise movement regulation is integrated directly in transducer body.
- > Important parameters:
 - Nylon strings.
 - Four neodymium magnets.
 - Maximum velocity \pm 30 mm/s (designed primarily for 57 Fe Mössbauer spectroscopy).
 - Non-linearity less then 0.1 %.
 - Line width about 0.276 mm/s.
 - Conversion ratio approx. 1.6 V = 10 mm/s.
 - Resonant frequency 30 50 Hz.
 - Velocity signal from sensor coil output.
 - Velocity error signal output.

SPECTROMETER MAIN UNIT

- > Contains all spectrometer electronics, including Velocity Signal Generator, Spectrum Registration Unit, personal computer with Windows OS installed, Spectrometric PC application, power supply and status display.
- > Velocity Signal Generator:
 - Triangular velocity signal (Constant acceleration symmetric).
 - Velocities up to ± 30 mm/s.
 - One period of velocity signal consists of 32 768 values.
 - One period of velocity signal is divided into 1024 channels.
- > Spectrum Registration Unit:
 - Unfolded registered spectrum consists of 1024 data points.
 - Maximum possible value for one point is 2³² counts.
- Personal computer:
 - With Windows OS and spectrometric application installed.
 - Used for communication with spectrometer and data storage.
 - Can be easily connected to the internet network and thus accessed remotely.
- > Power supply:
 - Pc and spectrometer power supply.
 - Power failure battery backup system.
- > Status display
 - displays information about sample and spectrometer status.

